Rep 5
Conceptual Representation Software

RepNet
Manual for
Version 1.0

July 2009

Copyright © 2009, Brian R Gaines and Mildred L G Shaw
Centre for Person-Computer Studies
3635 Ocean View, Cobble Hill, BC V0R 1L1, Canada
mailto:cpcs@shaw.ca
http://repgrid.com
Contents

1 *RepNet* visual language for construct networks ... 1-1
 9.1 Net syntax of node and line types .. 1-1
2 Creating and editing nets ... 2-1
 2.1 Entering nodes ... 2-1
 2.2 Selecting, positioning, deleting and editing nodes ... 2-2
 2.3 Entering and deleting lines .. 2-3
 2.4 Covering and exposing the editing area to edit a node’s note and state .. 2-4
 2.5 Enclosure nodes ... 2-6
3 Copy/paste and drag/drop ... 3-1
 3.1 Copy and paste .. 3-1
 3.2 Drag and drop .. 3-1
 3.3 Dragging files to a net ... 3-1
4 Contextual menus .. 4-1
 4.1 Contextual menu when cursor is over a node ... 4-1
 4.2 Contextual menu when cursor is outside a node .. 4-2
5 Net syntax and appearance defining and editing .. 5-1
 5.1 Lines .. 5-1
 5.2 States ... 5-2
 5.3 Nodes ... 5-2
6 Printing and saving nets .. 6-1
 6.1 Printing nets ... 6-1
 6.2 Saving nets ... 6-2
7 Integration with other applications ... 7-1
 7.1 Integration between *RepGrid* and *RepNet* ... 7-1
 7.2 Grid analyses in *RepNet* ... 7-2
 7.3 Changing the color scheme of *RepGrid* analyses within *RepNet* .. 7-3
 7.4 Integration of *RepGrid* and *RepNet* with other applications ... 7-4
 7.5 Integration with web browsers—accessing URL’s by clicking nodes .. 7-4
 7.6 Integration with web servers—saving images and web maps ... 7-5
 7.7 Monitoring and managing research projects and programs in *RepNet* 7-5
8 References .. 8-1
1 RepNet visual language for construct networks

The RepNet tool in Rep 5 allows visual languages to be specified and representations within those languages to be constructed, edited and programmed to support user interaction. RepNet may be used on its own for entering, editing and sharing graphic representations of construct networks, and also in conjunction with RepGrid, for example in element elicitation. The content of nodes in nets may be dragged to RepGrid panes to become elements or construct poles (as can text from documents), and vice versa. In addition, RepGrid graphic analyses are output as RepNet nets which allows them to be edited in RepNet and stored as editable graphics.

Nets and grids are complementary constructivist techniques, and may be used together to help people to explore their ideas about a topic, make them more explicit and discuss them with others (Gaines and Shaw, 1994; Gaines and Shaw, 1995).

1.1 Net syntax of node and line types

Nets consist of nodes which may be joined by lines. Each node has a named type which determines the appearance of nodes of that type, a textual label which names it and is generally displayed, a textual note which annotates them and is not generally displayed, and a state indicated by a visual marker. The label or note, or both, may be an empty string. Lines between nodes may be decorated in various ways, usually as directed arrows. The collection of node and line types available provide a syntax in which can be represented the semantics of the kind of net that can be drawn.

Here are some examples of constructions from the literature visually represented in RepNet. First, below is a Toulmin-style “argument diagram” in a net syntax having six types of nodes: ‘Grounds,’ ‘Modality,’ ‘Claim,’ ‘Backing,’ ‘Warrant’ and ‘Rebuttal.'
Second, below is a Novak-style “concept map” in a net syntax having three types of nodes: ‘Ideas’ as text with an oval surround, ‘Examples’ of them as text with a rectangular surround and ‘Link’ labels as text without a surround that labels the link between nodes formed by two lines.

RepNet “concept map” example from Novak and Gowin (1984)

Third, below is a “semantic network” for an ontology of family relationships (Donini, 2003) in a net supporting a visual language for description logics (Gaines, 2009). The node types used are ovals for concepts, rectangles for cardinality constraints and unenclosed text for relations. The arrow types used signify “defined by” or “defined by opposite” if there is a cross mark.

RepNet “semantic network” for a family ontology
Fourth, below is a “construct net” frame structure (Gaines, 2009) representing the conceptual dimensions of art objects as defined by Gaut (2000; 2005). Just one node type is used to represent a templet that might be fitted to experience, and two arrows signifying either “entails” or “opposite” if there is a cross mark.

RepNet “construct net” for contact lens prescription

Fifth, below is a “construct net” frame structure representing an expert system solution to a contact lens prescription problem that has been used as a standard test case in the artificial intelligence literature (Cendrowska, 1987). An additional rectangular node type is used to indicate a link to grid data for testing anticipatory inference.

A RepScript program that supports interaction with such construct nets and inference based on them can be used to infer the appropriate prescription based on the way in which a client is construed in terms of the constructs. It can also check the inferences for sets of test cases held in grids.
RepNet “construct net” for contact lens prescription
2 Creating and editing nets

This section is concerned with creating and editing nets when a specific syntax of node and lines types has already been specified.

RepNet keeps track of all the operations that change nets and supports multi-level undo by the “Undo” item at the top of the “Edit” menu (CMD-Z).

2.1 Entering nodes

When the “New Net” button in the “Rep 5 Manager” window is clicked a blank RepNet window opens as shown below (or as specified by the file “Default.rnet—see Introductory Manual). At the top is an editing area showing a text input field for the node label and the types of line available. Below this are icons for the node types initially available one of which may be selected by clicking on it. If one types a label in the text field and keys “return” or “enter,” then a new node is created of the type whose icon is selected. To support rapid entry, the text entered becomes selected so that further typing replaces it. If one double clicks an icon then it is selected and a new node is created just as if one had keyed keys “return” or “enter”

![RepNet initial window for a new net](image)

The “Idea” type is used for concepts, “Example” for examples of them, and “Link” is used between a pair of arrows to link concepts. The “Group” type provides a labeled enclosure that may be used to group other items and, because an enclosure is a node, the group may itself have links or be enclosed. The “Note” type is provided for annotation, and “Title” for titling. The “File,” “Grid,” “Net,” “Acrobat,” “Word” and “Excel” types are provided to indicate files represented in nets. This set of types provides a suitable syntax for a wide range of net applications, and is readily modified or replaced by the user.

Some nodes being entered initially are shown below.
RepNet nodes being entered

The label text is wrapped automatically to be enclosed in a rectangle with its width about forty per cent more than its height, and the surrounding shape specified by the node type is fitted around this. You can take control of the wrapping by inserting a SHIFT-return character at places where you want to break the line. You can specify an unbroken line by putting a SHIFT-return character at the end of it.

2.2 Selecting, positioning, deleting and editing nodes

Nodes may be selected by clicking in them, and are then highlighted to show they have been selected. Multiple selections may be made by holding down the SHIFT key while clicking. All nodes may be selected through “Select All” on the “Edit” menu or keying CMD-A. A set of contiguous nodes may be selected by clicking outside them to draw a temporary “selection rectangle” around them as shown below.
A node may be repositioned by clicking in it and dragging it to a new position. All the selected nodes may be repositioned together by clicking and dragging one while holding down the “shift” key to prevent the other nodes from being deselected.

Nodes may be deleted by pressing the “delete” or “backspace” key after selecting them.

A node may be opened for editing in the edit area by double-clicking in it. This opens the editing area if it is closed, selects the appropriate node type icon and displays the node label in the text input field. The type or label may be changed as required and then pressing the “return” or “enter” key will update the node appropriately.

2.3 Entering and deleting lines

As shown below, as the mouse is used to move the cursor across a node, the cursor changes shape to indicate what action may be performed by clicking and dragging. In the center it becomes a hand to indicate that the node can be grabbed and repositioned. At the right edge of a node it becomes a line (with an arrow head or other decoration if appropriate) to indicate that a line may be drawn from that node to another. At the left edge of a node it becomes an eraser to indicate that the same action will erase any line drawn.

Hand, line and eraser cursors with the mouse at different positions over a node

Clicking in the node when the cursor indicates a line and dragging to another node until the cursor changes to a star indicating the second node has been detected enters a line connecting the two nodes. Below is shown a line in process of being drawn between the nodes labeled “water” and “changes.”

Lines with arrowheads being entered

Note that “changes” is essentially a link label for the link between the idea of “water” and that of “states.” RepNet supports the labeling of links between concepts by treating the link label as a
node in its own right. This is the most general and flexible way of supporting link labels (and bipartite graphs), enabling links to have types if appropriate, and several links to share the same label if appropriate. As shown below where “can be” and “as in” are used as shared labels this facility avoids the duplication of link labels and simplifies and clarifies the meaning of the net.

A node “link” type being used to support shared link labels

RepNet supports several styles of line and, if more than one is available, buttons appear at the top right of the edit area allowing the style of line to be selected as shown below where a line without arrow heads has been selected.

Selection of style of a line

Clicking in a line style button selects it, and the cursor will show the line style when at the right edge of a node. Dragging from one node to another as described above enters a line based on the selected line style.

Lines are drawn from one of eight positions around a node that are selected automatically to minimize the length of the line and to ensure that it is always in the direction of the relative positions of the node. When nodes are dragged its lines are recomputed automatically, and when a node is deleted its lines are also deleted.

A line between nodes may be over-written by entering a line with a different style. A line between nodes may be erased by dragging the eraser symbol between the nodes.

2.4 Covering and exposing the editing area to edit a node’s note and state

When a net is completed the editing area may be covered by clicking in the dark rectangle at the top of the vertical scroll bar on the right of the net window and dragging it upwards. This drags the net up to cover the edit area, and it may be dragged down again at any time to expose the edit area. When a normal net file is opened from a file the edit area is covered, and when a new net is created by opening a “master” file (Section 6.2) or clicking on the “New Net” button the edit area is partially exposed.
As shown below the editing area has four panes which may be exposed dragging the dark rectangle down. The top two panes have already been described: the first allowing a node label to be entered or edited and a line type to be selected; and the second a node type to be selected. The third pane allows a hidden note associated with a node to be entered or edited. The note may be entered or edited in the same way as the label, and when the “return” or “enter” key is pressed the node will be created or updated. One use for the note field is to store the URL of a document that will be accessed when the node is clicked with the net locked (Section 7.5).

RepNet editing panes

Each node has an individual state specified by a named color scheme and eight binary flags that can be on or off. The third pane allows the color scheme and flags to be entered or edited. It comprises a popup menu, a check box for each flag, and a ninth check box that is provided as a convenient way to set all the flags to their off state.

The flags are usually set programmatically through associated scripts and used for a variety of purposes dependent on the application, for example, in anticipatory inference from construct nets to indicate that a node representing a templet is asserted or inferred to fit, or not to fit, a situation. However, the flags can also be set and edited directly.

The popup menu on the left selects a style specifying a solid color and a fill color. The eight check boxes specify flags with visual indicators, the first seven of which are in the solid color and the eight in the fill color: a vertical line across the node; a horizontal line across the node; a back diagonal line across the node; a forward diagonal line across the node; a central dot in the node; an annulus around the node; the node frame and the node fill. An example of a marked node is shown below.

A node with state flags set

An example of using scripted node states to indicate the results of inference is shown below.
RepNet “construct net” for contact lens prescription with states set to show inferences

A vertical bar in a node indicates that the templet represented by that node fits the experience under consideration, a horizontal bar that it does not. Green bars represent the original construction of the experience. Other colors represent anticipatory inferences based on the past experience represented by the seven schemata in the bottom half of the net. Blue indicates inference by superordination, red by opposition, black by subordination from a templet that does not fit (irrelevancy). Turquoise represents inference by abduction from experience, that one of the experiential schemata must fit the experience under consideration.

2.5 Enclosure nodes

One of the possible node types supported by RepNet is an ‘enclosure node’ where a node can act as a container for other nodes. The “Group” node type in the default syntax for nets is an enclosure, and its application is illustrated below.
Enclosure nodes used to group other nodes

An enclosure node is created in the normal way, but it takes account of any selected nodes and positions itself to contain them. When it is dragged to a different position it repositions the enclosed nodes. Lines may be drawn between an enclosure node and other nodes in the normal way.

Enclosure nodes may be resized. The cursor changes to a double arrow symbol at each corner of an enclosure node, and clicking and dragging may be used to resize the node.
3 Copy/paste and drag/drop

3.1 Copy and paste

Selected nodes and the lines between them can be copied into the clipboard through the “Copy” command in the “Edit” menu or by keying CMD-C. RepNet puts both the net data and an image in the clip in such a way that it is able to paste the data back into a net whereas other programs, such as word processors, paste the image in their documents. The image is normally in a vector graphics format, but if the shift key is held down while selecting the “Copy” command in the “Edit” menu then a bitmap image will be placed in the clipboard. The vector graphics format generally supports higher quality printing and scaling and allows the image to be pasted into a graphics package and edited as vector data. The bitmap option is useful for nets containing non-Roman Unicode characters that may not print correctly or paste correctly in some applications.

Net data in the clipboard may be pasted into another net through the “Paste” command in the “Edit” menu or by keying CMD-V. Nodes pasted may change appearance if the node type in the receiving net has a different graphic representation. If a node type with the same name does not exist in the receiving net then the node type data is also copied to the receiving net (making it possible to copy node types between nets).

Text data in the clipboard may be pasted into a net. Each line of text creates a new node of the type selected in the popup menu, and places the text in both the label and the note fields. This enables the user to edit the label, for example to shorten a journal citation, while retaining the full text in the note field. Tab characters in the data (typically from spreadsheet columns) are replaced by return characters in the label field, and hence generate new lines when the node label layout is calculated.

When you paste data into a net, RepNet centers it at the point where you last clicked in the net. Hence, to set the location for pasting, click in the net before you paste.

3.2 Drag and drop

Drag and drop of net data behaves much the same as cut and paste except that RepNet puts the net data in the drag item for its own use, and the text of the node labels in for use by other applications. To distinguish between repositioning selected nodes and dragging copies of them, one must hold the “alt” or “option” key down when dragging in a node to indicate that it should become a drag item. When this is done the drag item is indicated by a gray rectangle initially surrounding the selected nodes.

Dragging a selected node, or nodes, and dropping them into the same net is a rapid way of duplicating those nodes.

When you drag data into a net, RepNet places it at the point where you drop it.

3.3 Dragging files to a net

Files may also be dragged to a net. RepNet automatically converts them into a text item containing a URL commencing with “file://” that provides a link to the file together with additional identification data, and will be processed as a URL as noted in the previous section. If there is a node type specified for the file extension then a node of that type will be created. If not,
and there is a node type specified for the extension “*” then that type will be created. If not the selected node type will be created.

Below is shown a net into which files have been dragged having some of the extensions normally made available in a net. The node on the far right is one where there was no match for the extension and the default file type was used.

Files dragged and dropped into a net

The note field shows the URL created for the net file referenced by the node on the left. The first text item is an absolute path to the file, and the next three items are the file size, creation date and modification date used in file searches. *Rep 5*’s file search algorithm first attempts to find the file relative to the net file containing the node, then through the absolute path, and then through a search that takes into account the file name, size and dates. This makes it possible to link to files even if their location has been changed.
4 Contextual menus

When the cursor is moved around a net it become a hand when over the central area of a node and an arrow when outside a node. The hand cursor symbol has a menu icon on its right indicating that a menu is available if one holds the “control” key down and clicks, right-clicks with a two-button mouse, or clicks and holds the mouse down without moving it.

4.1 Contextual menu when cursor is over a node

Shown below is the contextual menu that appears when this is done while the cursor is over the top node of the net being used as an example. On the left is shown the “Align” submenu, and on the right the “Spread” submenu.

Selecting the top menu item, “Align,” causes RepNet to align any selected nodes with the node under the cursor. It aligns the node centers either horizontally or vertically according to which requires the least movement. This usually corresponds to the user’s intentions. The most important visual effect is that any lines between the nodes become horizontal or vertical lines which gives the net a neater appearance.

The submenu off the second “Align” menu provides the options to align the left, horizontal centers, right, top, vertical centers or bottom of the selected nodes. The “Spread” submenu provides the options to space the selected nodes evenly between the two extreme nodes, horizontally, vertically or both.

Selecting the “Edit Node” menu item opens the node for editing as if it had been double-clicked.
4.2 Contextual menu when cursor is outside a node

Shown below is the contextual menu that appears when the cursor is not over a node.

“Edit Syntax” brings up a floating dialog that may be used to edit the syntax of the net as detailed in the following section.

“Save Master” brings up a file save dialog that may be used to save the net as a master file (section 6.2).

“Save PNG Image” brings up a file save dialog that may be used to save the image of the net in portable network graphics (PNG) format, e.g. for embedding in a web document.

“Set Background Color” brings up a color selection window that may be used to set the background color of the net.

“Lock Net” changes the mode of interaction with the net and is indicated by the cursor becoming a button icon over a node and a star outside nodes. The net can be unlocked by double-clicking outside its nodes. One use of the lock feature is to fetch URL’s stored in the hidden note field as discussed in Section 7.5.

“Run CNet” runs a RepScript program “CNet” that sets up an interactive inference framework for construct nets. This is a dynamic item that keeps track of the last script run. The “Run” submenu below shows all the scripts currently available. This is also a dynamic menu that lists scripts in directories named “NetScripts” in a number of locations: the application directory containing Rep 5; the Rep 5 directory in the user’s “Documents” or “My Documents” directories; the directory containing the net and any enclosing directories. In this example, the script “CNet” is in the “NetScripts” directory in the same directory as the net, and “Make Web Map,” “PrinGrid Trajectories” and “Show Net Structure” are in the “NetScripts” directory in the same directory as the Rep 5 application.
5 Net syntax and appearance defining and editing

The net syntax editing dialog that is activated by the “Edit Syntax” item in the contextual menu is shown below.

![Syntax editor floating dialog](image)

5.1 Lines

The “Lines” panel at the top left may be used to define the line types that are available when editing a net. The line shape can be selected by clicking on any of the eighteen shapes shown in the top row. The available line types are named in the popup menu on the left below the line shapes which can be used to select the type for editing. A new line name may be typed in the text box to the right of it, and the line color and arrow head color, if any, can be specified through the two color swatches on the right. The “Delete” button deletes the line type selected in the popup.
menu. The “New” button defines a new line type with the new name typed into the text box and the shape and colors specified. The “Apply” button changes the line type selected in the popup menu to have and the shape and colors specified. When arrows that have been used in a net are deleted or edited the net automatically changes to reflect this. If all the line types but one are deleted then the remaining line type cannot be deleted.

5.2 States
Immediately below the “Lines” panel is a “States” panel having a popup menu of state color schemes, to the right of which is a text box in which the state color scheme names can be entered and edited. A new state color scheme name may be typed in the text box to the right of it, and the mark color and fill color can be specified through the two color swatches on the right. The “Delete” button deletes the state color scheme selected in the popup menu. The “New” button defines a new state color scheme with the new name typed into the text box and the mark and fill colors specified. The “Apply” button changes the state color scheme selected in the popup menu to have the colors specified. When state color schemes that have been used in a net are deleted or edited the net automatically changes to reflect this. If all the state color schemes types but one are deleted then the remaining state color scheme cannot be deleted.

5.3 Nodes
Immediately below the “States” panel is a “Nodes” panel having a popup menu of node types, to the right of which is a text box in which the state color scheme names can be entered and edited. A new node type name may be typed in the text box to the right of it. Below these are popup menus for the font and size of text in the node, and a file extension text box in which may be entered the file extension associated with the node type, if any—“*” matches any file extension if there is no other match.

The “Type” panel has a check box that controls whether the type name is shown at the top of a node. The “Line” check box controls whether a separator line will be drawn under it if it is shown. The “Italic” and “Bold” check boxes and the color swatch control the style and color of the type name if it is shown.

The “Label” panel has a check box that controls whether the node label is shown. The “Wrap” check box controls whether the label text will be wrapped (if one or more SHIFT-return characters are embedded in the label these will be used to wrap it regardless of the “Wrap” check box). The “Italic” and “Bold” check boxes and the color swatch control the style and color of the label if it is shown.

The “Shape” panel allows one of twelve possible frames to be selected in which to display a node. The final shape at the bottom right is different from the others in that it indicates an “Enclosure” node (Section 2.5).

The “Frame” panel has a check box that controls whether the frame is shown. The “Width” popup menu controls the width of the frame and the color swatch controls the color of the frame if it is shown.

The “Fill” panel has a check box that controls whether the frame is filled. The color swatch controls the color of the fill if it is shown.

The “Delete” button deletes the node type shown on the popup menu near the top. If there is only one node type it cannot be deleted.
The “New” button creates a new node type with the name shown in the text box to the right of the popup menu near the top. The name must be different from that of any existing node type.

The “Apply” button applies the specification of the node type shown on the popup menu near the top to nodes of that type in the associated net, updating the appearance of the nodes as appropriate. Note that when one node type is edited, the “Apply” button must be used before proceeding to edit another node type.

The floating syntax editor dialog can be closed using the platform-dependent controls at the top.
6 Printing and Saving Nets

6.1 Printing nets

The “Print” item in the “File” menu may be used to print the net image to the currently selected printer. The “Page Setup” item may be used to adjust the scale and orientation of printing, and Rep 5 stores whatever format is selected so that it will be retained when the application is terminated and restarted. Under Windows XP the page margins may be set, and “Page Setup” should be used when the application is first installed to ensure these are set up appropriately.

If the net is too large to fit on one page it will be printed on multiple pages that may be glued together to form a larger page. As shown below, the page boundaries may be viewed by holding the “alt” or “option” key down while clicking in the net outside of any nodes.
A large net may also be scaled down to fit a single page by using the “Print Fit” item in the “File” menu.

6.2 Saving nets

When the data in a RepNet window is changed the “Save” item in the “File” menu becomes active as does the “Undo” item in the “Edit” menu. You can save the changed data under its original name through the “Save” command. The “Save As…” command in the “File” menu is always active and lets you save the net in a different file.

The “New Net” button creates a new net with some predefined node types that provides a syntax adequate for many applications. However, a wide variety of sets of node types may be used to support many forms of nets for different purposes such as semantic networks, bond graphs, argument analysis, concept maps and so on. The “Save Master” item in the contextual menu enables new types of nodes to be created and stored as a syntactical structure in “master” files which behave like any other net file except that when they open a copy is made with the name “Untitled.”

Thus master files are a way of distributing various syntactical structures for nets suited to different applications RepNet. Rep 5 is distributed with various sample nets from different disciplines together with master files for the syntax of those nets.

Master files are useful for issuing syntax nets containing only the node and line types to be used for different representation systems. However, they can also contain a net and hence may also be used for other purposes, such as issuing student tests where some nodes are left blank to be filled by the student.
7 Integration with other applications

The tools in Rep 5 have been designed to operate separately as stand-alone facilities, and also in an integrated way among themselves and in conjunction with other applications such as word processors, spreadsheets and web browsers.

7.1 Integration between RepGrid and RepNet

Nodes in nets may be selected and then copied and pasted, or dragged and dropped, onto a RepGrid window, and the node labels are treated as text entries. The RepGrid elements pane shown below was populated by selecting, dragging and dropping some of the nodes at the lower right of the concept map about water shown in Section 1.1.

Net nodes selected, dragged and dropped into a grid elements pane

Similarly, items in grids may be selected and then copied and pasted, or dragged (while holding down the “alt” or “option” key) and dropped, into a RepNet window, and become the labels of new nodes having the type selected on the popup menu. The net below was populated by selecting, dragging and dropping the elements in the grid window shown above. Thus grids may be created from nets and nets from grids.

Grid elements selected, dragged and dropped into a net
7.2 Grid analyses in RepNet

The graphic analyses produced by RepGrid and RepSocio are RepNet nets with some extended features and can be edited, copied and pasted, stored, and so on using RepNet capabilities.

The graphic output from the PrinGrid and Crossplot analyses consists of a net of nodes and lines which includes special nodes having no label but displaying as a cross or a ball. These special nodes may be selected, dragged, copied and pasted in the normal way. Hence, the entire graphic output, or any part of it, may be selected, copied and pasted into another net.

The graphic output from the Display, Focus and Compare analyses consists of a graphic object together with a title node. The graphic object behaves in much the same way as a node in that it can be selected, dragged, copied and pasted. The net below shows Display, PrinGrid and Focus outputs pasted into a single net with the Focus graphic output selected for dragging.

Grid analyses in a net

The graphic output from the RepSocio Socio analysis consists of a net of nodes and lines which includes special lines having a weight so that different nets may be displayed by interactively changing the threshold for a line with a given weight to display. The weight associated with each link is saved with the net, and when the net file is opened it continues to be interactive. The special lines that are visible may be selected, dragged, copied and pasted in the normal way through operations on the nodes which they link.

The net below was created by copying and pasting socionets with different values of the cut off back into the original Socio output. The socionet at the top center is the active one, and those around it are snapshots of it at different values of cut off.
7.3 Changing the color scheme of RepGrid analyses within RepNet

The “Style” in the analysis button in RepGrid (see RepGrid Manual) is the most convenient way to define a color scheme for the graphic analysis of grid. However, sometimes one may wish to adjust the scheme in the output itself using the net syntax editing capabilities of RepNet (Section 5). If so, it is useful to know how the color scheme has been mapped into the four net styles defined in the analysis nets, “Title,” “Element,” “Construct” and “Rating,” as given in the tables below.

<table>
<thead>
<tr>
<th>Label</th>
<th>Frame</th>
<th>Fill</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Title text</td>
<td>Unused</td>
<td>Background</td>
</tr>
<tr>
<td>Element</td>
<td>Element text</td>
<td>Element tree</td>
<td>Element lines</td>
</tr>
<tr>
<td>Construct</td>
<td>Construct text</td>
<td>Construct tree</td>
<td>Construct lines</td>
</tr>
<tr>
<td>Rating</td>
<td>Rating text</td>
<td>Rating high</td>
<td>Rating midle</td>
</tr>
</tbody>
</table>

Node types color scheme for Display, Focus and Compare analyses
Node types color scheme for PrinGrid and Crossplot analyses

<table>
<thead>
<tr>
<th>Element</th>
<th>Element text</th>
<th>Unused</th>
<th>Unused</th>
<th>Unused</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Title text</td>
<td>Unused</td>
<td>Background</td>
<td>Unused</td>
</tr>
<tr>
<td>Contract</td>
<td>Construct text</td>
<td>Unused</td>
<td>Unused</td>
<td>Unused</td>
</tr>
<tr>
<td>Rating</td>
<td>Unused</td>
<td>Unused</td>
<td>Unused</td>
<td>Unused</td>
</tr>
</tbody>
</table>

Lines
- linking lines when labels displaced from locations

Axes
- x, y and z axes

Dimensions
- construct dimensions in PrinGrid

Plane
- 3D plane and lines dropped to the plane

Line types color scheme for PrinGrid and Crossplot analyses

7.4 Integration of RepGrid and RepNet with other applications

The copy and paste, and drag and drop, data interchange works equally well with material in other applications such as text files and spread sheets. For example, a document in a text editor that allows multiple discontiguous selections, such as Microsoft Word, may have various words selected which are then dragged to the elements pane of a grid to become its elements, or to a net to become its nodes.

7.5 Integration with web browsers—accessing URL’s by clicking nodes

The hidden note field in each node supports node annotation for a wide variety of purposes. One application that is supported by RepNet is to store a URL in the note field and to access it through a web browser either when the node is clicked locally or when an image of the map is made part of a web page and clicked remotely.

Below is shown a net representing American presidents with the hidden notes having a link to the White House web site page for the appropriate president.
If the net is locked through the contextual menu and a node is clicked then a “ShowURL” command is generated to the operating system that causes the URL to be fetched through the user’s preferred web browser. Note that URL’s can also take other forms, such as “file://” to open local files, or “mailto:” to generate an email message.

Files that are dragged to a net create nodes whose note field contains a “file://” URL linking to the file (Section 3.3). Hence it is simple to create a net of nodes containing links to documents on the web, or stored locally, such that the documents will be opened in the appropriate application when the node in the web is clicked.

Note that such documents include grid and net data which will open in RepGrid or RepNet when the node is clicked, so that one readily manage Rep 5 projects using Rep 5 nets.

7.6 Integration with web servers—saving images and web maps

A graphic image of the net may be saved in PNG format for use on the web by selecting “Save Image” from the contextual menu. A web map in HTML may be generated by selecting and clicking on “Make Web Map” in the Script button/popup menu. The output for the net above is shown below.

```html
<!-- This is the client side image map -->
<MAP NAME="Presidents">
   <AREA SHAPE="RECT" COORDS="2,25,53,48" HREF="http://www.whitehouse.gov/history/presidents/fr32.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="14,54,55,77" HREF="http://www.whitehouse.gov/history/presidents/ht33.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="24,82,79,105" HREF="http://www.whitehouse.gov/history/presidents/de34.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="48,109,91,132" HREF="http://www.whitehouse.gov/history/presidents/jk35.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="80,136,128,159" HREF="http://www.whitehouse.gov/history/presidents/lj36.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="199,137,245,160" HREF="http://www.whitehouse.gov/history/presidents/gf38.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="138,145,189,168" HREF="http://www.whitehouse.gov/history/presidents/rn37.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="234,108,269,131" HREF="http://www.whitehouse.gov/history/presidents/rr40.html" TARGET="Presidents">
   <AREA SHAPE="RECT" COORDS="259,80,301,103" HREF="http://www.whitehouse.gov/history/presidents/gb41.html" TARGET="Presidents">
</MAP>

<!-- This is the image -->
<img SRC="Presidents.png" USEMAP="#Presidents" WIDTH="332" HEIGHT="170">
```

Including this as part of a web HTML document will show the net as a clickable image, and clicking on a node that had a URL in its hidden note will fetch the document corresponding to that URL in a new window.

The WebNet service in RepServe (see RepServe Manual) provides an alternative approach supports by serving nets directly, dynamically converting them to clickable images in PNG format, and responding to clicks on nodes by fetching the document specified by the URL in the note field.

7.7 Monitoring and managing research projects and programs in RepNet

Since RepNet nodes may contain active links to local or remote files and can open these files in the appropriate application, RepNet can be used to monitor and manage research projects and programs. As the files can themselves be nets that will open in RepNet, it is possible to do this using a hierarchical or network structure of interlinked nets. As the files can also be grids that
will open in *RepGrid* it is possible to use *RepNet* to manage collections of grids and associated documentation. Since the nets with the associated links can be incorporated in HTML documents as clickable images with the links in associated wep maps, the whole, or part, of the network can be made available through the Internet or an intranet.

The net below is the top level entry point for a structure of nets indexing a CD-ROM developed using a previous version of *RepNet* that documented an international program on intelligent manufacturing systems (Gaines, Norrie, Lapsley and Shaw, 1996). The node containing a group photograph of the project members has been clicked to open the photograph in another application as shown behind the net. Clicking the node headed “Movie” shows a movie about the program, “Report” open the final report in a document viewer, and so on. The nodes headed “Net” when clicked open other nets which give access to more detailed information about specific projects. These can in turn open further nets or open files in other applications such as AutoCAD.

![Net diagram](image)

Nets indexing a CD-ROM documenting an international research program

The net below represents the grids used to illustrate *RepSocio* (see RepSocio Manual), showing their roles in the research project (Shaw and Gaines, 1989). Clicking on a grid opens it in *RepGrid*.
Net indexing a set of grids from a research project

The net below provides a generic framework for graduate research projects (Shaw and Gaines, 1998), based on stating an aim, developing it into a series of objectives, and developing these into a series of activities necessary to achieve them. The seven objectives on the left also correspond to the chapter structure of many theses.
Net representing a generic framework for graduate research projects

The generic net can be linked to a more specific net in which abstract nodes have been replaced with instances of each that are applicable to a particular research project. Each node in the specific net can be linked to a more detailed net that links to specific project documents, research notes, results, draft thesis chapters, and so on.
8 References

Some of the reports cited in the manual are available through http://repgrid.com

